FIDGET WITH DIGITS: SPECIFIC LEARNING DISORDER WITH IMPAIRMENT IN MATHEMATICS DIAGNOSIS AND TREATMENT
What Math Involves

“Any successful execution of math competencies requires the person is attentive, organized, able to switch sets, and work quickly enough to avoid overloading working memory stores that retain information needed for on-line access of different kinds of information.” (p. 210)

What Math Involves

“Mathematics involves computation, itself the product of knowledge and retrieval of facts, and application of procedural knowledge. Problem solving, particularly solving word problems, involves computation, language, reasoning, and reading skills and perhaps visual-spatial skills as well.” (p. 210)

Mathematical Intuition

- **What is Mathematical Intuition?**
 - Even in elementary arithmetic multiple cognitive areas are used for different tasks.
 - Exact arithmetic uses specific language areas in the left inferior frontal lobe which generates associations between words.
 - Symbolic arithmetic was dependent on improvement of number notations and is a cultural invention specific to humans.

Mathematical Intuition

- Approximate arithmetic relies on non-verbal quantity representation implemented in visual-spatial areas of the right and left parietal lobes.
- It is possible this non-verbal representational numeral quantifying ability has a long evolutionary history dating back to pre-humans.

“...heritability in arithmetic would amount to about 50%--implying that about half the variance in arithmetical performance is due to genetic differences among individuals” (p. 142).

Genetics

- 50% to 70% of math ability is inherited
- SLD Math in SLD children 50%
- SLD Math in SLD teens and adults 60%
- About 50% with SLD in Math will persist for 3 years

During mental calculation the right and left angular gyrus (hIPS-Horizontal Part of the intraparietal sulcus) fire simultaneously with the right side slightly stronger.

Also the prefrontal cortex fires strongly.

“Prefrontal areas play a key role in mathematics, including arithmetic. As a rule, a prefrontal lesion does not affect most elementary operations, but it can yield a specific impairment in executing a series of operations in the appropriate order” (p. 185).

“They add when they should multiply, they do not process digits in the correct order, they forget to carry over when needed, or they mix up intermediate results—often the telltale signs of a basic inability to supervise a sequence of operations” (p. 185).

Math & The Prefrontal Cortex

“The prefrontal cortex is especially vital for the on-line maintenance of intermediate results of a calculation. It provides a ‘working memory’, an internal representational workspace that allows the output of a computation to become the input to another” (p. 185-186).

This also allows for mathematical estimation and the ability to do word problems.

“Working memory requires considerable mental energy; The brain cannot inhibit interference or retain information indefinitely, and memories slip away. Math achievement depends on using this mental energy efficiently. Most mathematical activity requires working memory, although some problems require more of it than others” (p. 123).

Math & Phonological Loop

“The phonological loop holds and rehearses verbal material, as well as certain aspects of visual information, such as objects, pictures, geometric forms, letters, and words that one may remember by their names, descriptions, and other visual associations...Verbal working memory, found to correlate with math performance at all ages plays an important role in even simple math”. (p. 123).

Math & Phonological Loop

- Phonological memory is required for:
 - Multiplication
 - Math facts

Math and Phonological Memory

“Insofar as phonological memory impairment affects the storage of serial order information, the processing of number words may especially vulnerable...variance in counting span (i.e., a measure of concurrent object counting and storage totals) is strongly associated with mathematical development and mathematical difficulties, suggesting the possibility that working memory system(s)...
Math and Phonological Memory

“...specialized for dealing with count-based information may cause mathematical difficulties and may overlap in some cases with constraints on phonological memory” (p. 160).

Phonological Working Memory & Dyscalculia

Phonetic/semantic working memory allows for the representation and retrieval of math knowledge and facts. This may be part of the difficulty in those with dyscalculia.

“The brain holds visual information in ‘sketchpad’ fashion chiefly in the right hemisphere, with iconic and spatial material coded separately along their respective visual circuits. The spatial circuit and working-memory skills it supports develop slowly and continue to mature well into adolescence. Spatial working memory impacts math-related learning very early, however” (p. 124).

Math & Visual-Spatial Sketchpad

- Visual-Spatial Sketchpad is required for:
 - Vertically aligned complex calculations
 - Mental numerical estimates
 - Algebra
 - Subtraction
 - Number sense number line manipulation

Working memory and executive function are found in those with Specific Learning Disorder with Impairment in Mathematics. “In early years, they count slowly, continue to rely on finger counting for basic computations, and fail to master basic math facts (or even ‘learn’ erroneous ones). These difficulties can lead to debilitating computational inefficiency and impaired learning later...”
Poor Working Memory & Math

“...Moreover, many children with additional reading or general language disorders often have phonological or visual impairments that affect their working memory for words and numbers” (p. 125).

The decision making part of the frontal lobe is different from calculation execution part of the frontal lobe.

“Without a plan for solving a problem, and sometimes without even a clear goal in mind, student result to their only alternative: trial and error…” (p. 127).

Self-Monitoring & Math

➢ “Solving math problems ...requires the insight to know when one is off course. This sort of critical judgment is useful not only in evaluating one’s solution to a problem, but also in assessing the reasonableness of one’s chosen strategies for achieving it” (p. 127).

➢ Students who have trouble with this: those with AD/HD and/or those with poor number sense

“...shifting response set, is just as important for math and life as having a plan in the first place. A person’s ease in abandoning irrelevant strategies in favor of more adaptive ones is the mark of mental flexibility” (p. 128).

Some people are preservative.

The left hemisphere controls language and mental calculation.

It also has important functions in attention, executive function, working memory and self-control. The more complex language sequencing and syntax the harder it is to comprehend a math problem.

Past and Future Neurons

“In a sector of prefrontal cortex called the dorso-lateral region or ‘area 46’, neurons are known to be involved in the on-line maintenance of past or anticipated events in the absence of any external input (as when we rehearse a phone number, for instance)” (p. 201).

“Regardless of numerical competency, deficits in working memory tasks...and executive function tasks...are commonly observed in children with math LDs” (p. 212).

“Some studies have suggested that problems with visual-spatial working memory are more likely to characterize children with specific math disability..., whereas children with both reading and math disabilities have a more pervasive language and verbal working memory difficulties” (p. 212).

Math and Working Memory

“In typically developing children, for example, numerical working memory, depending on whether regrouping is required, but visual-spatial working memory is related to numerical estimation” (p. 213).

“The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.”
“Children with MD (math disorder, sic.) only showed stronger SNARC (spatial numerical response codes, sic) and second order congruency effects than did TD (typically developing, sic.) children, whereas the numerical distance effects were similar across the three groups. Finally, the first order congruency effect was associated with reading difficulties. These results showed that children with mathematical difficulties with or without reading difficulties were globally more impaired when spatial incompatibilities were presented.”
“The results showed that children with an arithmetic disability failed in a number updating task, but not in the object updating task. The opposite was true for the group with poor reading comprehension, whose performance was worse in the object than in the number updating task. It may be concluded that the problem of WM updating in children with LD is also due to a poor representation of the material to be updated. In addition, our findings suggest that the mental representation of the size of objects relates to the semantic representation of the objects’ properties and differs from the quantitative representation of numbers.”
Dehaene defined *Number Sense* as, “...the peculiar idea that we owe our mathematical intuitions to an inherited capacity that we share with other animals, namely, the rapid perception of approximate numbers of objects” (p. 237).

“The human baby is born with innate mechanisms for individuating objects and for exacting the numerosity of small sets.

That this ‘number sense’ is also present in animals, and hence that it is independent of language and has evolutionary history.

That in children, numerical estimation, comparison, counting, simple addition and subtraction, all emerge spontaneously without much explicit instruction...”
“...That the inferior parietal region of both cerebral hemispheres hosts neuronal circuits dedicated to the manipulation of numerical quantities” (p. 227).

The Three Laws of Number Sense

1) An object can only occupy one location at a time.

2) Two objects cannot be in the same location at the same time.

3) Objects cannot disappear and reappear and they will follow a continuous trajectory.

Number Sense

“Children who start elementary school with difficulty associating small exact quantities of items with the printed numerals that represent those quantities are more likely to develop a math-related learning disability than are their peers, according to a study supported by the National Institutes of Health”.

Dr. David Geary stated, “Our findings suggest that children who generally struggle with math -- the low achievers -- may have a poor sense of numbers, but they can narrow the achievement gap in part because most of them can memorize new math facts and, thus, learn some aspects of math as quickly as their typically achieving peers”.

“Dr. Geary added that, in contrast to the low achievers, students with a math learning disability not only have a poor concept of numbers, but also have difficulty memorizing math facts”.

Number Sense

“That the human baby is born with innate mechanical mechanisms for individuating objects and for exacting the numerosity of small sets.

This ‘number sense’ is also present in animals, and hence that it is independent of language and has a long evolutionary history.

That in children, numerical estimation, comparison, counting, simple addition and subtraction, all emerge spontaneously without much explicit instruction...”
“...That the inferior parietal region of both cerebral hemispheres hosts neuronal curcuits dedicated to the mental manipulation of numerical quantities” (p. 227)

Subtypes of Dyscalculia

“The GD (general dyscalculia, sic.) group displayed weaknesses with both symbolic and nonsymbolic number processing, whereas the AFD (arithmetic fact dyscalculia, sic.) group displayed problems only with symbolic number processing. These findings provide evidence that the origins of DD (developmental dyscalculia, sic.) in children with different profiles of mathematical problems diverge. Children with GD have impairment in the innate approximate number system, whereas children with AFD suffer from an access deficit. These findings have implications for researchers’ selection procedures when studying dyscalculia, and also for practitioners in the educational setting.”
Mathematics

“Unlike reading, which needs to be taught, children have a biologically based propensity to acquire arithmetic skills (e.g., counting, adding, and comparing and understanding quantities) without formal schooling. Interestingly, the computational basis for numeric abilities is not exclusive to Homo Sapiens and has been demonstrated in monkeys as well.” (p. 766)

Infants can tell small quantities from large ones.

Mathematics Disorder

“Unlike reading, math is a discipline. It is the only discipline that is taught kindergarten through 12th grade. It is varied (think of measurement, geometry, data analysis, algebra, and rational numbers), cumulative in nature, and as you move across grade levels, it becomes increasingly complex.” (p. 10)

Specific Learning Disorder with Impairment in Mathematics

Typical Symptoms

– Frequently malformed or reversed numbers and symbols
– Reading Disorder-Dyslexia
– Inability to sum integers
– Inability to recognize operation signs
– Because of their spacing and order, inability to read accurately the correct value of multi-digit numbers

Specific Learning Disorder with Impairment in Mathematics

– Poor memory for basic number facts
– Failure to carry numbers
– Inaccurate ordering and spacing of numbers in problems
– Also working memory and simultaneous processing problems

Specific Learning Disorder with Impairment in Mathematics

Geary indicated there are 3 subtypes of Mathematics Disorder

1. Semantic Memory Problems: This includes inconsistent retrieval from memory of math facts, and inconsistent processing time.

2. Procedural Problems: students use, “...immature procedures...frequent errors in the execution of procedures...potential delay in the understanding of concepts underlying procedural use...” (p. 6)

Specific Learning Disorder with Impairment in Mathematics

3. Visuospatial Problems: “...include the misalignment of numerals in multi-column arithmetic problems, numerical omissions, numeral rotation, misreading arithmetical operation signs and difficulties with place value and decimals...Other studies suggest that spatial deficits will also influence the ability to solve other types of mathematical problems, such as word problems and certain types of geometry problems.” (p. 9)

Specific Learning Disorder with Impairment in Mathematics

- Those with Semantic Memory Problems tend not to remember as many math facts as their non-disabled peers.
- They will not outgrow problems.
- At first they have trouble encoding math facts into long term memory; later they have problems retrieving such information.
- Trouble inhibiting unneeded math facts

Specific Learning Disorder with Impairment in Mathematics

Some of this may be related to the Rapid Automatized Naming problems in those with Specific Learning Disorder with Impairment in Reading/Dyslexia.

Specific Learning Disorder with Impairment in Mathematics

- Those with Mathematics Disorder tend to use immature problem solving strategies with math.

- This may be due to developmental delays.

Specific Learning Disorder with Impairment in Mathematics

- Comorbidities:
- 50% Reading Disorder-Dyslexia (Geary, 2000)
- AD/HD
- NVLD
- Autism Spectrum Disorder
- Synesthesias (Cytowic, 1999)

Gerstmann’s Syndrome

“Gerstmann's syndrome is a cognitive impairment that results from damage to a specific area of the brain -- the left parietal lobe in the region of the angular gyrus. It may occur after a stroke or in association with damage to the parietal lobe. It is characterized by four primary symptoms: a writing disability (agraphia or dysgraphia), a lack of understanding of the rules for calculation or arithmetic (acalculia or dyscalculia), an inability to distinguish right from left, and an inability to identify fingers (finger agnosia). The disorder should not be confused with Gerstmann-Sträussler-Scheinker disease, a type of transmissible spongiform encephalopathy.

Specific Learning Disorder with Impairment in Mathematics

Dyslexia and Mathematics Disorder

– Dyslexics have different math problems than those with MD who are not dyslexic.

– Dyslexics have trouble with:
 • Memorizing math facts
 • Comprehending word problems
 • Mis-sequencing numbers as they write

BUT

Specific Learning Disorder with Impairment in Mathematics

• Dyslexics without MD do not tend to have trouble with:
 – Basic computational problems
 – Fundamental conceptual problems with math comprehension
 – No secondary right hemisphere deficit of spatial cognition

Dyslexia and Specific Learning Disorder with Impairment in Mathematics

“Too frequently and too readily, individuals with dyslexia who have difficulty with mathematics are misdiagnosed as having dyscalculia-literally trouble with calculating, a neurologically based disability. True dyscalculia is rare...We know that for individuals with dyslexia, learning mathematical concepts and vocabulary and the ability to use mathematical symbols can be impeded by problems similar to those that interfered with their acquisition of written language.” (p. 14)

Specific Learning Disorder with Impairment in Mathematics

“It is proposed that weak phonological processing abilities underlie the learning difficulties of MD/RD children, and that weak number sense is a causal factor in the math-fact learning of MD only and some MD/RD children.” (p. 81)

Specific Learning Disorder with Impairment in Mathematics

- Those with Combined Type AD/HD have significant difficulty with mathematical calculation and applied math.
- Those with Inattentive AD/HD (Sluggish Cognitive Tempo) have pervasive problems with mathematical calculations in particular.
- The Combined Type AD/HD tend to have problems with verbal sequences and mental calculations.

Specific Learning Disorder with Impairment in Mathematics

Rourke stated that deficits in math calculation and reasoning are highly related to weaknesses in visual-perceptual and visual-spatial reasoning. He indicated this could be related to Nonverbal Learning Disorders (NVLD) (Social Communication Disorder – DSM-5, sic).

Specific Learning Disorder with Impairment in Mathematics

Today as students advance in grades they are expected to be able to use and understand the vocabulary of mathematics more and more. Many students have difficulty with math vocabulary; especially those with Specific Learning Disorders.

Not all Students Who get the Correct Answer but Cannot Show Their Work Are Cheating

Some synaesthetes (60%) calculate by seeing numbers in space around them often in a number line.

The correct answer just appears to them; they cannot explain why, or how it does. It just does.

They are not cheating. Test and proctor them by themselves.

Specific Learning Disorder with Impairment in Mathematics

“It is suggested that assessment move away from a system that seeks only correct responses and move toward a system that seeks information concerning student ability to communicate mathematics principles, reason, prove and explain mathematics, and demonstrate connections between mathematics and other subjects.” (p. 47)

Ad/HD & Math Difficulties

“In fact, a comprehensive study found that attention was the most robust factor affecting first graders math performance” (p. 121).

THE RESEARCH PROGRAM IN MATHEMATICS AND SCIENCE COGNITION AND LEARNING-DEVELOPMENT AND DISORDERS
Mathematics and Science Cognition and Learning: Development and Disorders (MSCL) Program

- Originally known as:
 - THE RESEARCH PROGRAM IN MATHEMATICS AND SCIENCE COGNITION AND LEARNING-DEVELOPMENT DISORDERS

- Your Tax Dollars at Work!

- http://www.nichd.nih.gov/about/org/crmc/cdb/prog_mscl/index.cfm
Your Tax Dollars At Work

- Study the biology and genetics of math learning
- Longitudinal study of number estimation
- Study Subtypes of Specific Learning Disorder with Impairment in Mathematics
- Study normative development of math abilities
- Study Classroom interventions for those with AD/HD, Reading Disorder, Turner Syndrome, Fragile X, Williams Syndrome and Specific Learning Disorder with Impairment in Mathematics

THE RESEARCH PROGRAM IN MATHEMATICS AND SCIENCE COGNITION AND LEARNING- DEVELOPMENT AND DISORDERS

Research into etiology, classification, diagnosis, prevention, treatment, genetics, longitudinal aspects and comorbidity of Specific Learning Disorder with Impairment in Mathematics

www.nichd.nih.gov/CRMC/cdb/math.htm#interest
Specific Learning Disorder with Impairment in Mathematics: Prevalence

- 3 to 5% have Specific Learning Disorder with Impairment in Mathematics
- There is an equal number of males and females who have it.
- ¼ of those with Dyslexia and ¼ with AD/HD have Specific Learning Disorder with Impairment in Mathematics.
- Those with Reading Disorder-Dyslexia and Specific Learning Disorder with Impairment in Mathematics are the most impaired.

Specific Learning Disorder with Impairment in Mathematics & Nonverbal Learning Disabilities (Social Communication Disorder)

- Most people who do not have Reading Disorder-Dyslexia but have Mathematics Disorder have symptoms similar to NVLD.
- NVLD is not the same as Mathematics Disorder.
- Those with Reading Disorder-Dyslexia represent the majority of those who have problems with arithmetic, but they usually do not meet criterion for Mathematics Disorder.
- Approximately 65% of those 9 to 15 years old with NVLD will have Mathematics Disorder.

“Much of math ability is learned, but it’s quite possible that an inborn factor influences both the understanding of quantities as well as makes learning math easier for some people. This study doesn’t imply or prove that math abilities aren’t learned,” Mazzocco said.

Math Learning Disorder=Problems With “Number Sense”

“Many children have significant mathematical learning disabilities (MLD, or dyscalculia) despite adequate schooling. We hypothesize that MLD partly results from a deficiency in the Approximate Number System (ANS) that supports nonverbal numerical representations across species and throughout development. Here we show that ninth grade students with MLD have significantly poorer ANS precision than students in all other mathematics achievement groups (low-, typical-, and high-achieving), as measured by psychophysical assessments of ANS acuity (w) and of the mappings between ANS representations and number words (covar). This relationship persists even when controlling for domain-general abilities. Furthermore, this ANS precision does not differentiate low- from typical-achieving students, suggesting an ANS deficit”.

Specific Learning Disorder with Impairment in Mathematics = Problems With “Number Sense”

Michèle Mazzocco, Ph.D., whose research was funded by the NIH’s NICHD found that children with Specific Learning Disorder with Impairment in Mathematics /dyscalculia had the worst number estimation scores. About 10% of children have persistent problems with math. Poor number sense appear to be the core difficulty of those with dyscalculia, but not those who are low math achievers as a whole.

“This report represents the first comprehensive analysis of math education to be based on sound science...The National Math Advisory Panel’s findings and recommendations make very clear what must be done to help our children succeed in math. We must teach number and math concepts early, we must help our students believe they can improve their math skills and we must insure...”
...they fully comprehend algebra concepts by the time they graduate high school. The Panel’s work will benefit generations of American students” (Margaret Spellings, U.S. Secretary of Education, March 13, 2008).

Testimony of over 200 scientists
Over 150 organizations involved
Reviewed over 16,000 research studies

National Mathematics Advisory Panel

• Needs of Math Students:
 – Rapid recall of arithmetic facts in elementary school
 – Mastering fractions in middle school
 – Rigorous algebra instruction in high school
 – The algebra instruction is most important to insure good college and career success.

“There is not a sufficient number of studies with children of various ages and grades to draw strong conclusions about schooling and mathematical development, but the research that has been conducted thus far suggests a similar pattern, that is, decreased involvement of the prefrontal/working memory regions and increased involvement of the angular gyrus with increasing grade level and mathematical experience”.

Between 5 to 10 percent of students will be identified as having a Specific Learning Disorder with Impairment in Mathematics before finishing high school.

Most of the research on Specific Learning Disorder with Impairment in Mathematics has been conducted with elementary aged children.

Several “chronic” Specific Learning Disorder with Impairment in Mathematics:

- Inefficient retrieval of math facts
- Inefficient counting strategies (i.e., do not use “counting-on strategies”)
- Limited Working Memory Problems
- Problems with Number Sense
 - Can’t quickly visualize number lines for magnitude comparison and transforming word problems into equations
Contributions to Low Math Achievement:

- Deficient math instruction
- Limited informal math teaching in the home
- Problems with sustained mental effort (i.e., AD/HD, etc.)
- Weak motivation

Explicit Instruction for Specific Learning Disorder with Impairment in Mathematics:

“Explicit instruction involves step-by-step plans for solving a problem. The teacher demonstrates a specific plan for a set of problems (as opposed to a general problem-solving heuristic strategy) and students are asked to use the same procedures/steps demonstrated by the teacher to solve the problem.” (p. 4-69)
“Generally, clear consistent modeling of step-by-step strategies through teacher explanation, modeling and demonstration; planful sequencing of teaching and practice examples; and specified procedures for providing corrective feedback characterize explicit systematic instruction...In addition, this set of studies also demonstrates how explicit instruction has evolved over time to incorporate more innovative instructional features that support and encourage interaction, flexibility, and generalization.” (p. 4-73)

National Mathematics Advisory Panel

• Classroom strategies to help those with Specific Learning Disorder with Impairment in Mathematics:
 – Concrete and visual representations
 – Explanations by teachers
 – Problem solving aloud; individually and as a group
 – Student group work
 – Carefully orchestrated practice and feedback
 – High but reasonable expectations

Educational Benchmarks:

• By the end of 5th Grade:
 – Multiplication and division of whole numbers
 – Comparing fractions, decimals and common-percent plus: addition and subtraction of same
 – Solve problems related to perimeter and area of triangles and quadrilaterals having at least one pair of parallel sides

National Mathematics Advisory Panel

• Benchmarks by the end of 6th Grade:
 – Multiplication of fractions and decimals
 – All operations with positive and negative integers
 – Analyze properties of two-dimensional shapes and solve problems of perimeter and area
 – Analyze properties of three-dimensional shapes and solve problems of surface area and volume

National Mathematics Advisory Panel

• Benchmarks by the end of 7th Grade:
 – All operations of positive and negative fractions
 – Solve problems involving percent, ratio, and rate and extend this work to proportionality
 – Familiarity with the relationship between similar triangles and the concept of the slope of a line

Treating Math Problems in Those with AD/HD

“Evidence from this review further suggests emphasizing concept development and problem solving. That is, students with ADHD may perform better on applied problems than on fact retrieval, indicating that difficulties with computation do not preclude math problem solving. Even so, accommodations can be made available for tasks involving math fact fluency (e.g., using color, background nonvocal music, computer games) to enhance the effective stimulation or arousal needed for sustained attention...”
Treating Math Problems in Those with AD/HD

“...Psychostimulant medication can also improve math fact performance of students with ADHD, but it does not improve higher level skills such as concept development or the comprehension of math, reading, or language tasks”...However, placing color strategically on relevant dimensions could be used to direct attention, decrease working memory requirements, and improve multiple-step problem performance. Finally, interventions for problem solving in a meaningful peer context could reduce a widening achievement gap; students with ADHD need less emphasis on memorizing and convergent solutions and more emphasis on math and its communicative and persuasive possibilities” (p. 236).

Habilitation

Khan Academy: “Practice math at your own pace with our adaptive assessment environment. You can start at 1 + 1 and work your way into calculus or jump right into whatever topic needs some brushing up. Each problem is randomly generated, so you never run out of practice material. If you need a hint, every single problem can be broken down, step-by-step, with one click. If you need more help, you can always watch a related video.”

https://www.khanacademy.org/about
Specific Learning Disorder with Impairment in Mathematics

• Habituation:
 – Remedial work to help them master process and/or facts they have missed.
 – Work to overcome mathematics anxiety (counseling, etc.)
 – Teach them specific skills to solve problems.
 – Remedial work with math facts
 – Multi-sensory teaching
 – Use flash cards with math facts
 – When teaching math relate it to the ‘real world’.
Specific Learning Disorder with Impairment in Mathematics

- Use graph paper for calculations.
- Teach mnemonics.
- Use a pocket sized flip chart or Personal Data Assistant (i.e., smartphone, etc.) with basic math facts and/or procedures needed contained within it.
- Teach them to acknowledge their computational strengths and weaknesses and how to work with them.
Specific Learning Disorder with Impairment in Mathematics

• Teach them to self-monitor their work.
• Have them work with others who may be skilled in math.
• Encourage the student to do math orally and have them monitor for errors and questions as they do.
• For AD/HD consider medications
Specific Learning Disorder with Impairment in Mathematics

• Lerner made the following suggestions for Secondary Students with Mathematics Disorder:
 – “Provide many examples
 – provide practice in discriminating various problem types.
 – provide explicit instruction.
 – separate confusing elements.” (pp. 504-505)

Math Accommodations

- **Chisanbop Korean Finger Math, etc.**

- **Technological Accommodation:**

 – Talking Calculator – May need study a carol/headphones to prevent distracting others while using it.

- **Abacus**

- **Slide Rule**
Possible Working Memory Treatment

www.cogmed.com

• Working Memory Training:
 – Torkel Klingberg, M.D., Ph.D.
 – Karolinska Institute- Stockholm, Sweden
 – CogMed software company
 – AD/HD deficient in visual spatial working memory. Gets worse with age.
 – **MAY** help relieve executive functioning difficulties in Combined Type AD/HD.
 – **More Research is needed!**

Ingersoll, B. (October 26, 2006). Complementary Treatments for AD/HD. Paper Presented at the 18th Annual CHADD International Conference, Chicago, IL.
“The literature review highlights several findings that warrant further research but ultimately concludes that there is a need to directly demonstrate that WM capacity increases in response to training. Specifically, we argue that transfer of training to WM must be demonstrated using a wider variety of tasks, thus eliminating the possibility that results can be explained by task specific learning. Additionally, we express concern that many of the most promising results (e.g., increased intelligence) cannot be readily attributed to changes in WM capacity. Thus, a critical goal for future research is to uncover the mechanisms that lead to transfer of training.”

Math Computer Training Programs

“For distractible children, computer fact drill can be effective, particularly when it includes immediate feedback, rewards, and occasional competition...” (p. 136).

“What is Spatial-Temporal Reasoning? Born out of neuroscience research at the University of California, Irvine, MIND’s unique approach accesses the brain’s innate “spatial-temporal” reasoning ability. This ability, which lies at the core of innovative thinking and sophisticated problem-solving, allows the brain to hold visual, mental representations in short-term memory and to evolve them in both space and time, thinking multiple steps ahead. MIND’s approach consists of language-independent, animated representations of math concepts delivered via the Spatial-Temporal (ST) Math® software games...”
Author (No Date). Reimagining Math Education. Mind Research Institute. From website: http://www.mindresearch.net/programs/
What Can I Do In The Classroom With Combined Type AD/HD Kids With Math Problems?

- They benefit less from practice, hence they are not as fluent.
- They need more novelty in the classroom.
- Teach how to use an abacus/finger math.
- Use competition in the classroom.
- Allow them to think aloud. Remember they are delayed in internalized speech!

What Can I Do In The Classroom With Combined Type AD/HD Kids With Math Problems?
(Continued)

- Don’t waste time mastering basic skills since they do not tend to generalize:
 - They have a problem with fluency.
 - They have sequential memory problems.
- Focus on their problem solving in math.
- The higher level skills are the most important for them to learn.
- Use graph paper for written problems.
- Use calculators.
- Play music without lyrics.

Specific Learning Disorder with Impairment in Mathematics

Broody and Ginsberg wrote of messages students with Mathematics Disorders hold. They are as follows:

– “Only geniuses can understand mathematics. Just do as you are told. You are not really smart enough to understand it.”

– Mathematics is a bunch of facts and procedures. Normal children memorize it quickly. You’re dumb if you can’t.”
Specific Learning Disorder with Impairment in Mathematics

In mathematics, there is one correct method for doing things. Good children can follow directions. You’re bad if you use an unacceptable procedure like counting.” (p. 193)

“Solve It” Word Problem Solving Routine

1. Read for understanding
2. Paraphrasing or putting the problem into one’s own words
3. Visualizing by drawing a schematic representation that shows the relationships among the problem parts
4. Hypothesizing or setting up a plan
“Solve It” Word Problem Solving Routine

5. Estimating or predicting the answer
6. Computing or doing the arithmetic
7. Checking to make sure the problem was done correctly

How to Solve Word Problems

• “Solve It”: A cognitive routine to solve word problems
 – Teacher thinks aloud while demonstrating a mathematical task.
 – Student verbalizes thought process while solving problems
 – Teacher monitors student’s thought process and gives encouragement and corrective feedback.

Solving Word Problems

LD students often need, “…intensive interventions that emphasize understanding the language and factual information in the problem, using relevant information to generate an adequate mathematical model or representation, devising and monitoring a solution plan, and executing procedural calculations.” (p. 20)

Solving Word Problems

“Despite plenty of practice, student with LD continue to encounter difficulties solving word problems when they have learned the keyword approach. The keyword approach focuses on the solution strategy; hence, it requires less effort (of the teacher) than modeling or representing the problem situation.” (p. 20)

“Schema-based instruction addresses the weakness of the keyword and the general heuristic approaches by using a conceptual teaching approach that integrates mathematical problem solving and reading comprehension.” (p. 20)

Jose and his father gathered 10 pounds of wool from a sheep. So far some of the wool has been used to make a sweater. Now there are 5 pounds of wool left. How many pounds of wool have been used?

Schema Based Problem Solving

10 - ? = 5
So ? = 10 − 5
? = 5

Whole Number

Big Known Number

Minus ?, Pounds

10 pounds

5 pounds
“Problem compensation involves modeling or representing the problem situation, which requires going beyond direct translation of the problem text from words to equations (e.g., the keyword *altogether* is translated into addition) to understanding the mathematical problem structure. Understanding is evident when semantic cues (e.g., both red pens and blue pens are subsets, and all pens are supersets).” (p. 21)

Solving Word Problems

“Instruction is appropriately scaffolded so that a) teacher-mediated instruction is followed by paired partner learning and independent learning activities, b) tasks begin with story situations followed by word problems with unknown information, and c) visual diagrams and checklists are initially provided to support learning and are gradually removed or replaced by student constructed diagrams.” (p. 21)

Solving Word Problems

• **FOPS**
 – F: Find the type of problem
 – O: Organize the information using problem diagram
 – P: Plan to solve problem
 – S: Solve problem

Student-Teacher Math Diaries

- Have the students write a daily math diary of questions and comments about class, assignments, etc.
- This encourages “non-talkers in class” to interact with the teacher, so he/she can better monitor their progress.

Specific Learning Disorder with Impairment in Mathematics

- General Accommodations for College:
 - Allow calculator use in class.
 - Provide tutoring
 - Academic advisement with disability in mind
 - Multi-sensory teaching of math
 - Course substitution

- Kerper added that students with MD should be allowed to take tests alone with professors to ask questions.

Specific Learning Disorder with Impairment in Mathematics

- A Good Resource On Mathematics Disorder Is:
